This course has been registered with GBCI for CE hours.

HVAC Systems: Effective Design vs. Operations

BY U.S. Green Building Council

NUMBER OF CE HOURS: 1.0
LEARNING OBJECTIVES

1. Identify tools to assist in tracking facility improvements.
2. Develop strategies to improve existing facility operation.
3. Identify low cost & capital improvement projects.
• Associate Principal
• Healthcare Client Executive
• 13+ Years @ IMEG
• Registered Engineer (PE)

Affiliations
• IAEE
• ASHRAE
• AHA
• ASHE

Presentations
• 2018 ISHE Fall Conference
• 2019 USP <797> & <800>
• 2020 PDC Summit

Publications & Awards
• 2019 ASHRAE Technology Award
• White Paper: Off-Site CSS Facility
IMEG Firm Overview

AT-A-GLANCE

100 YEAR HISTORY
1,300 EMPLOYEES
U.S. BASED & EMPLOYEE-OWNED
40 LOCATIONS
400 LICENSED ENGINEERS
$177M IN ANNUAL REVENUE
#104 / TOP 500 DESIGN FIRM

TOP 10 ENGINEERING FIRM IN U.S.
(Building Design + Construction)

SPECIALTY SERVICES
- Acoustics
- Architectural Lighting
- Building Performance Analysis
- Building Certification
- Commissioning
- Medical Equipment Planning
- Security
- Utility Infrastructure

KEY DIFFERENTIATORS
- MARKET-SECTOR FOCUSED
- INNOVATIVE THOUGHT LEADERSHIP
- GROWTH ORIENTED
- SUSTAINABLE DESIGN SOLUTIONS
- PROACTIVE DESIGN PARTNERS
PRESENTATION AGENDA

• ESTABLISHING A BASELINE
• BENCHMARKING YOUR FACILITY
• CAMPUS STANDARDIZATION
• IMPLEMENTATION CONCEPTS
• CASE STUDY
ESTABLISHING A BASELINE
Understanding Your Facility

Documenting Your Facility

▷ AHU Zone Maps

▷ Multiple Plants & How They Operate
 • Boiler Plants
 • Chiller Plants
 • Domestic Water Systems

▷ Operation Setpoints, Sequences & Reasons
 • “We open this valve when these people complain, and close it when those people complain”
Benchmarking Your Facility

Create Your Facility’s Baseline

Create a Facility Assessment
- Internal / External

Create a System
- Assign Asset Tags
- Facility Nomenclature
 - Retroactive & New Project

Maintain Documentation
- Test & Balance Reports
- Joint Commission Documentation
- Code Deficiencies
- Operating Costs

Priority Classification

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRIORITY</th>
<th>COST</th>
<th>ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>Chiller Plant</td>
<td>P2</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Boiler Plant</td>
<td>P3</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Boiler Plant</td>
<td>P2</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Boiler Plant</td>
<td>P1</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Boiler Plant</td>
<td>P2</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Fire Protection</td>
<td>P2</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Heating Water System</td>
<td>P3</td>
<td>TBD</td>
<td>Exact routing and flow calculations need to be investigated in order to avoid budgetary numbers</td>
</tr>
<tr>
<td>94</td>
<td>Heating Water System</td>
<td>P2</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Air Handling Unit Replacement</td>
<td>P1</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>

Note: PRIORITY 1 (P1): Item does not meet code, presents a safety hazard or has direct impact on patient care
PRIORITY 2 (P2): Affects the building performance
PRIORITY 3 (P3): General recommendations, Modernization Upgrades, Good Practice
Benchmarking Your Facility

Tools for Tracking Performance

➤ Systems Metering
 • Natural Gas
 • Electricity
 • Steam
 • Heating Water
 • Chilled Water
 • Domestic Water

➤ Types of Meters
 • Electromagnetic In-line
 • Electromagnetic Insertion
 • Clamp-on Ultrasonic

➤ FMCS Trending
BENCHMARKING YOUR FACILITY
Energy Star Portfolio Manager

- www.energystar.gov

Based on National Median, Not Average

Measured in Energy Use Intensity (EUI)

Provides a Baseline for Similar Facilities

<table>
<thead>
<tr>
<th>Broad Category</th>
<th>Primary Function</th>
<th>Further Breakdown (where needed)</th>
<th>Source EUI (kBTU/m²)</th>
<th>Site EUI (kBTU/m²)</th>
<th>Reference Data Source - Peer Group Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare</td>
<td>Ambulatory Surgical/Center</td>
<td></td>
<td>128.3</td>
<td>62.0</td>
<td>CBEC - Outpatient Healthcare</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td></td>
<td>429.9</td>
<td>224.3</td>
<td>Industry Survey</td>
</tr>
<tr>
<td></td>
<td>Hospital (General Medical & Surgical)</td>
<td></td>
<td>433.9</td>
<td>206.7</td>
<td>CBEC - Inpatient Healthcare</td>
</tr>
<tr>
<td></td>
<td>Other/Specialty Hospital</td>
<td></td>
<td></td>
<td></td>
<td>CBEC - Medical Office</td>
</tr>
<tr>
<td>Medical Office*</td>
<td>Outpatient Rehabilitation/Physical Therapy</td>
<td></td>
<td>138.3</td>
<td>62.0</td>
<td>CBEC - Outpatient Healthcare</td>
</tr>
<tr>
<td>Residential Care Facility</td>
<td></td>
<td></td>
<td>213.2</td>
<td>96.0</td>
<td>Industry Survey</td>
</tr>
<tr>
<td>Senior Care Community*</td>
<td></td>
<td></td>
<td>213.2</td>
<td>96.0</td>
<td>Industry Survey</td>
</tr>
<tr>
<td>Urgent Care/Clinic/Other Outpatient</td>
<td></td>
<td></td>
<td>145.8</td>
<td>64.5</td>
<td>CBEC - Clinics/Outpatient</td>
</tr>
</tbody>
</table>
Energy Consumption

- Energy use intensity (kBtu/ft²/yr)
- Building size
- IMEG projects
- Inpatient facilities (Chicago)
- Senior care facilities

- Lighting
- Heating
- Cooling
- Fans
- Pumps
- DHW

Energystar – Inp.
Energystar – Sr. Care
Prioritize Action

Tier 1
- Low-cost/no-cost operational improvement

Tier 2
- Operational and capital projects

Tier 3
- Likely need capital projects to reduce further
CAMPUS STANDARDIZATION
Does This Describe Your Facility?
Ask Yourself…

- If every building had the same type of air handling unit, would it be easier or harder to train staff?
- Could you better negotiate service contracts?
- Would it be easier to store replacement parts?
- Could you more easily compare performance from one building to the next?
- Would it be easier or harder to troubleshoot issues?
- Could staff from one building more easily help staff from another?
- What would this approach do for your lighting?
Establish Campus Standards

Tier 1 Goals
Minimum Maintenance
- LED lighting
- Occupancy sensors
- Daylight sensors
- Condensing boilers
- High-efficiency chillers/DX
- Lower hot water temperature
- Higher chilled water temperature
- Variable frequency drives
- Automatic scheduling of OFF
- Unoccupied mode patient room and OR
- Efficient ductwork sizing
- Dedicate AHU to usage type (e.g., OR AHU vs. patient AHU)
- Low-flow water fixtures
- Collecting metered data

Tier 2 Goals
Involved Maintenance
- Automatic air/water reset
- Dynamic VAV resets
- Tracking/benchmarking energy use
- Retro-commissioning
- Hybrid systems
- Scattered terminal units
- Heat recovery chiller
- Economizer
- Control sequences

Not Allowed
- Window A/C units
- Rooftop units
- Window-to-wall ratios above 40%
- External architecture doesn’t move
- Control sequences X, Y, Z
Title, Purpose, and Scope

1. PURPOSE:
The purpose of this guideline is to provide uniform sequences of operation for heating, ventilating, and air-conditioning (HVAC) systems that are intended to maximize HVAC system energy efficiency and performance, provide control stability, and allow for real-time fault detection and diagnostics.

2. SCOPE:
2.1 This guideline provides detailed sequences of operation for HVAC systems.
2.2 This guideline describes functional tests that when performed will confirm implementation of the sequences of operation.
IMPLEMENTATION CONCEPTS

• You Don’t Need the Most Efficient Equipment
• Small Steps Can Result in Big Impacts
Low-Cost First Steps

- **Commissioning (Cx)**
 - Retro-Cx & New Construction
 - Is Your Building Operating as Designed?

- **Low Cost Capital Improvements**
 - Replace and Install VFD’s
 - Explore Converting Constant Volume to Variable Volume
 - Air & Water Systems
 - Remove 3-way Valves in the System
 - Thumb rule: 1GPM/HP
 - Economizer Controls
 - Add / Verify
 - Take Advantage of Condensing Boilers & HEX’s
 - Heating Water Reset Schedule
Combine Chiller Plants

- Evolution of a Facility
- Expensive, but Significant Benefits
 - Redundancy
 - Air-cooled / Water-cooled Hybrid System
 - Efficiently Load (1) Chiller vs. Inefficiently Loading Multiple
 - Filling / Starting Cooling Towers
- Try to Piggy-back onto other Projects
- BUYER BEWARE: System Design can be Challenging
 - IMEG’s Experience
Chiller Plant Optimization

- Install VFD’s on all Chiller System Components
 - System Pumps (Primary, Secondary, etc.)
 - Condenser Loop Pumps
 - Cooling Tower Fan
- VFD’s Provide Means of Monitoring kW
 - Modify Controls to Calculate Plant & Total System kW
- Controls System to Calculate kW/Ton
- Facility Staff Trial & Error
 - Change Primary Pump Speed
 - Change Chiller Setpoint
 - Change Cooling Tower Speed
 - Change Condenser Pump Speed
- Trend kW/Ton and Optimize Your System
Capital Improvement Projects (cont.)

Install RO System for Boiler Feed & Humidification

- Ideal in Poor Water Quality Areas
- Decrease Frequency of Blowdown
 - Case Study: 5 Cycles vs. 50 Cycles of Concentrate
 - Water Savings
 - Energy (heating) Savings
- Decrease Operating & Maintenance Costs
 - Less Frequent PM of Humidification System
Measures: See Handout After Session

Phase I - No or low cost measures to reach 10-20% savings (years 1-3)

Encourage good habits
- More effective than single time interventions.
 - Clearly baseline the existing energy baseline (energy use, not cost) to make case for rolling all savings into capital improvement projects.
 - Make agreement up front before savings occur.
 - Consider tracking in EnergyStar Portfolio Manager.
- Initial focus on the 20% of facilities that use 80% of the system-wide energy use.
- Clearly post energy use of all facilities with all personnel — recognition leaders.
 - Share all energy expense data with the facilities staff.
 - Engage facility staff of poor performing buildings with those from other buildings.
 - Conduct minimum number of these measures each year, allow each building to select the best options for them.
 - Consider Building Operator Certification for facilities personnel — send 2-3 per year.
- Begin/move campus energy standards for New Construction and Renovation.
- Bolded items below have the largest operational cost savings potential.

Immediately fix measures that impact multiple end uses
- Semi-annual survey of OA dampers — for operation to design minimum OA and full closure.
 - Check OA settings at the largest units first and work down the list.
 - Hire a balancer to do a survey.
 - Trend mixed air temperature settings — set alarms.
- Monthly survey of nighttime shutdown for all non-essential AHUs.
- Semi-annual survey all independent exhaust fans for unoccupied shutdown.
- Reduce static pressure supply on all VFDs by 10% or higher until worst case loss value is 100% open.
- Survey VAV box minimums every 3-4 months; consider reset if minimum is >30%.
 - Adjust heating/cooling water supply temperature throughout.
 - Raise/CWS and reduce HWS by 2-4 degrees or higher until demand is not met.
 - (Note — maintain AHU humidity control)
 - Consider supply reset temperature based on return water temperature or outside air temperature.

Lighting
- Begin installing lighting occupancy sensors in areas with greatest occupant variability and highest connected load (do 30 or 20/year, for example).
- Replace existing cans fixtures with retrofit LED cans (50 year, for example).
- Install photocell to control exterior lighting — especially parking lot.
- De-lamp fixtures in non-critical spaces (reduce e-De-lamp fixtures to 2).

Air handling units
- Reset supply air temperature based on mixed air or outside air humidity.
- Assess and implement economizer cycle on all RTUs (even partial economizer if it is the only option).
- Install time clocks or demand sensors on kitchen hoods to turn off when not in use.
 - Hire a balancer to re-adjust high exhaust spaces every 2-3 years.
 - Re-wire restroom fans to operate with lights (or add timer).

Cooling
- Reset cooling tower condenser water temperature based on wet bulb — automated or seasonally.
- Perform weekly water testing of cooling tower — reduce blowdown in increments until maximum concentration is reached.
- Clean DK and evaporator coils monthly during cooling season.

Heating
- Reset steam pressure seasonally — higher in winter, lower in summer.
- Reset hot water supply temperature seasonally.
- Weekly testing of boiler chemical treatment.
- Annual testing of boiler combustion efficiency.
- Buy thermal imaging cameras and share among facilities; perform walk-through with spray foam insulation each December.

Water and domestic hot water
- Low flow aerators (0.5 gpm) and low flow showerheads (1.6 gpm) (do 10 or 20 per year, for example).
- Install low-flow dishwashing prewash spray nozzles.
- Install landscaping irrigation timers.

Phase II - Engage in Capital Projects to Reduce Energy Use (year 2-5)

Use energy audits or retro-commission studies as starting point for analysis (seek utility programs for low or no cost assessments)

Lighting
- Begin lighting upgrades in buildings with highest demand — target a specific square footage per year (20,000 sf per year for example).
- Daylight dimming for lobbies, atrium, common space with many windows.

Air handling units
- Add VFDs to constant volume systems.
- Add VFDs to kitchen exhaust and makeup.
 - Incorporate smoke or occupancy sensors.
- Transfer makeup air from adjacent dining space.
- Implement unoccupied mode for Operating Room ventilation.
 - Single large button to reset exhaust rates, temperature, and lighting when room is unoccupied.
- Add energy recovery to any replacement air handling units — use flat plate or heat plate if cross-contamination is a concern.
 - When replacing fan coil or fan powered boxes, select units with variable speed (ECM) motors.
- Add carbon dioxide sensors to high occupancy, variable use spaces — control AHUs, VAV box, and outside air damper based on CO2 levels.
- Add VFD to cooling tower fans — per individual towers to individual pumps. Turn off during part load conditions.
- Install banner management system utilizing stack temperature analysis and control of fuel/air mixture.
- Convert from constant volume chilled water distribution to variable volume.
 - Convert all AHU 3-way valves to two-way control.
 - Add VFD to pump(s).
- Add VFD to cooling tower fans — per individual towers to individual pumps. Turn off during part load conditions.

Heating
- Add VFD to chillers with 10+ years of remaining life.
- Convert from constant volume chilled water distribution to variable volume.
 - Convert all AHU 3-way valves to two-way control.
 - Add VFD to pump(s).

Water and domestic hot water
- Replace flush valves with dual flush or low flow (1/8 gallon for urinals) 10-20 per year, for example.
- Install heat exchanger that uses cooling tower condenser water to pre-heat domestic hot water.
CASE STUDY
Project Overview

- Existing Campus: 277,000 SF

- Project Size
 - 87,000 SF Addition (31.5% / 24%)
 - 18,000 SF Renovation (6.5%)

- Project Scope
 - Emergency Department
 - Surgical Suite
 - PACU
 - Heart Center
 - Central Sterilization Services (CSS)
 - Mechanical Penthouse

- Project Completion: 2017
HVAC Systems & Strategies

› Traditional HVAC Systems

› Chiller Plant
 • Combined Campus Plant
 • (2) Water-cooled
 • (3) Air-cooled
 • Spring/Fall Operation

› Boiler Plant
 • (3) Steam Boilers

› AHU Replacement
 • Constant Volume vs. Variable Volume

› AHU Coil Design
 • CW: 45°F EWT, ↑ ΔT
 • HW: Pumped Coil, 110°F EWT, 3FPS

› Ductwork Sizing

› LED Lighting
 • 0.785 W/SF \(\rightarrow\) Exceeds Code by ~30%

› Equipment Standardization

“The team was conscious of equipment ratings and high efficiency options, but did not allow expensive specialty systems to be the driver for project design.”
Per Hospital’s annual energy performance review, natural gas consumption increased in 2018 due to an increased heating demand – increased heating degreedays.