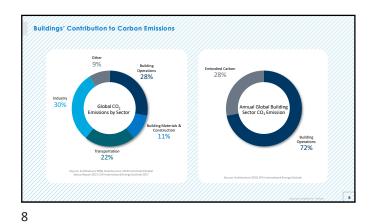


Course Description

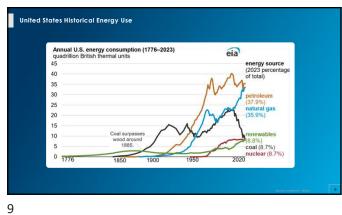
The importance of energy efficiency in the built environment has become well accepted over the past few decades. Significant advances have been made in design practices, codes, and technology that contribute to improved building energy efficiency. Despite these advances, there remains urgency in making additional gains in energy efficiency to advance building decarbonization and address climate change.

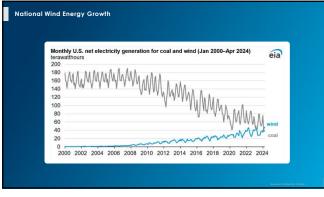
This session will review how establishing specific energy goals at the design stage for a project and implementing emerging high-performance measures provide significant additional opportunity for built environment energy efficiency gains and decarbonization. Technologies across the building envelope, mechanical system and end uses will be reviewed, highlighting how intentional design choices can drive these advancements.

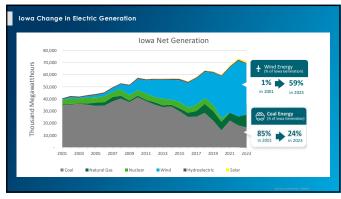
Learning Objectives

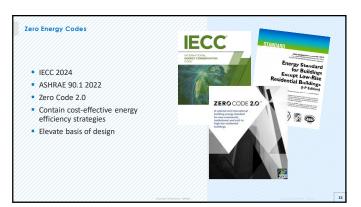

At the end of this course, participants will be able to:

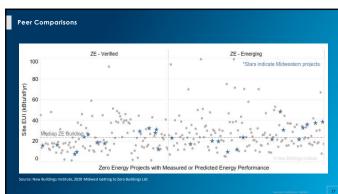
- 1. Compare and contrast different energy-related goals for the built environment and their impact on the intent of the design.
- 2. Understand the intersection of built environment energy efficiency and built environment decarbonization.
- 3. Identify emerging high-performance measures that reduce building energy consumption and help decarbonize the built environment.
- Identify methods and tools for evaluating high-performance measures during the design process to determine the benefits for a specific project.




Age	enda	
01	Goal Setting	
02	High Performance Measures	
	 Building Envelope Mechanical Domestic Hot Water Equipment 	
03	Evaluating Measures	
04	Conclusion	
		6





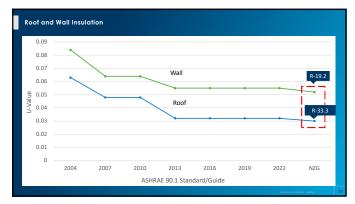


JI Targets, kBTU/ft ² ,	'year																
Building Type																	
Primary School	26	25	26	25	27	23	21	27	24	24	28	25	24	29	26	30	39
Low-Rise Apartment	20	21	19	20	21	19	17	21	20	20	24	21	20	24	23	27	31
Medium Office	24	24	23	23	23	21	17	22	20	20	24	21	20	25	23	22	27
Small Office	19	20	18	19	18	18	16	17	18	17	18	17	16	18	18	20	24
Secondary School	29	29	26	27	26	25	22	24	26	26	25	29	23	24	24	25	35
Public Assembly	27	28	27	27	28	26	24	28	26	26	30	28	27	31	29	34	40
Standalone Retail ²¹	27	30	26	28	25	26	21	25	26	26	26	28	26	27	26	29	35
Mid-Rise Apartment	22	23	21	22	23	21	19	24	22	22	26	23	23	27	25	30	34
Strip Mall ²¹	30	33	31	32	33	29	25	34	29	31	39	34	33	41	37	46	60
High-Rise Apartment ²¹	28	28	27	27	28	26	22	29	27	27	33	29	27	33	30	37	43
Warehouse	5	8	6	8	7	7	7	9	8	8	11	9	9	11	10	15	16
Small Hotel ²¹	36	35	35	35	35	34	32	36	34	34	38	35	34	39	37	41	47
Fire Station ²²	29	30	29	29	30	28	25	30	28	28	33	30	29	33	31	36	43

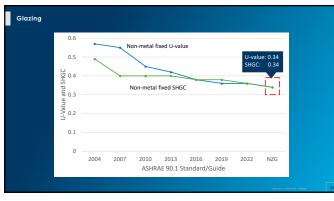
-		

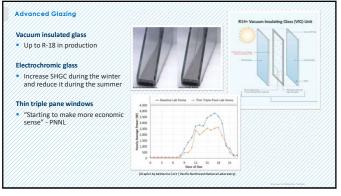
High Performance Measures

Building Envelope

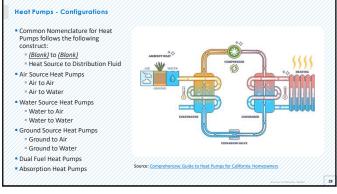

21

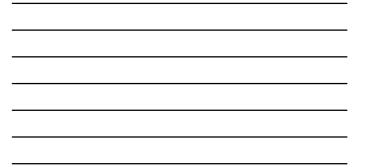
Building Envelopes

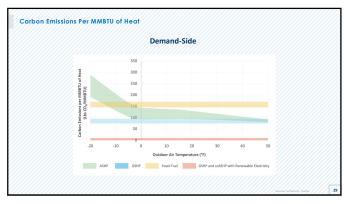

- Improve Insulation
- Good air sealing
- Improve the glazing
- Proper window placement and shading

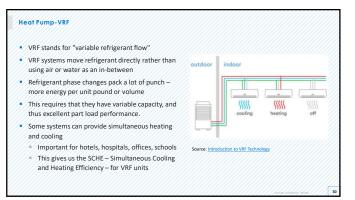



22

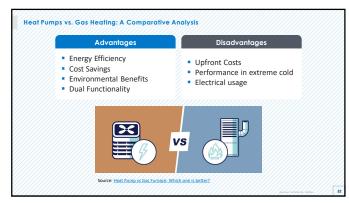


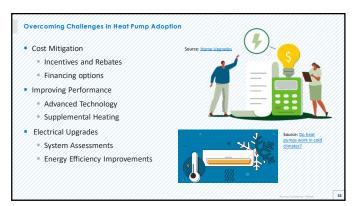




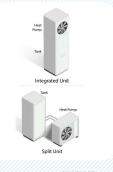


<text><list-item><list-item>

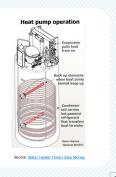




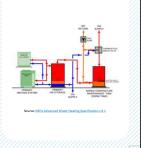
Heat Pump Configuration	Applications
Air-to-Air Heat Pump	Residential homes, small offices, retail spaces, and restaurants
Air-to-Water Heat Pump	Residential buildings, small to medium-sized offices, educational institutions, and hotels
Water-to-Air Heat Pump	Large residential homes, commercial buildings, data centers, and healthcare facilities
Water-to-Water Heat Pump	Large commercial properties, manufacturing facilities, and theatres/auditoriums
Ground-to-Air Heat Pump	Residential homes, educational buildings, office buildings, and hotels
Ground-to-Water Heat Pump	Residential homes, large commercial buildings, fire stations, and healthcare facilities



Heat Pump Water Heating System


- A system that heats water by transferring heat from one place to another using a refrigeration cycle, rather than generating heat directly
- Typically includes an evaporator, compressor, condenser, and expansion valve
- Extracts heat from the air, ground, or water and transfers it to the water in the tank
- Uses electricity to move heat rather than generate it, often resulting in efficiency 2 to 4 times more than traditional electric resistance water heater

35

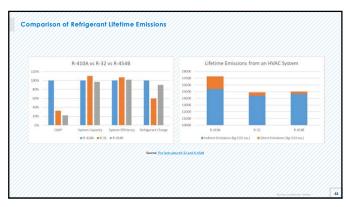

Packaged HPWH unit

- A compressor and evaporator are integrated into a single appliance to draw in ambient heat from surrounding air.
- Refrigerant condenser coils wrap the inside of the storage tank to heat the water.
- This type of equipment can be used in building types where the tank storage volume and recovery rate are sufficient to meet the domestic hot water demands.

Central HPWH Systems

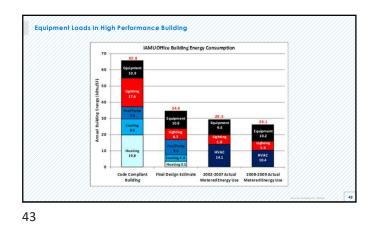
- Central HPWH systems are typically found in larger buildings or those with high hot water demands (e.g., hotels, hospitals, multi-family, etc.) and combine multiple storage tanks and HPWHs engineered to meet specific hot water usage demands.
- Central HPWH systems can consist of split units or packaged units.
- Central systems serve the entire building out of one DHW plant and includes a hot water recirculation line with circulating pump.

37

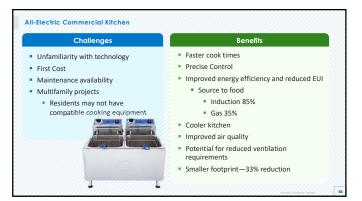


38

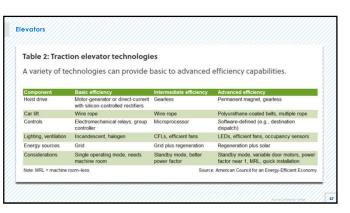
Low Global Warming Potential Refrigerants


- Traditional refrigerants with high GWP significantly contribute to global warming and climate change.
- In the United States, the American Innovation and Manufacturing (AIM) Act, signed into law in December 2020, mandates a phasedown of HydroFluoroCarbons (HFCs).
- Under this act, the Environmental Protection Agency (EPA) has mandated a 700 GWP limit as on January 1, 2025.
- Benefits of Low GWP Refrigerants
 - Environmental Impact
 - Regulatory Compliance
 - Performance

Refrigerant	GWP*	Notes
R-410a	2,088	Currently one of the most common refrigerants in the US Used for new light commercial AC equipment
R-22	1,810	AKA Freon*, Discontinued in 2010 for use in new HVAC equipment
R-407C	1,774	Currently one of the most common refrigerants in the US Used for AC and medium temperature refrigeration
R-134a	1,430	Currently one of the most common refrigerants in the US Used in small appliances and large commercial screw chillers
R513a	629	Used for low and medium temperature refrigeration systems. Used in Chillers and hot water heaters.
R-32	675	Wide global use - intended replacement for R-134a and may be in development for some VRF systems.
R-454b	466	Wide global use as a substitute for R-410a. R454b is currently used in some VRF systems, packaged RTUs, and residential split systems
R-600a	3	AKA isobutane, Highly flammable Used for small (dorm) refrigerators and commercial display coolers
R-514a	2	Used in chillers
R-1233zd	1	Used in chillers
R-1234ze	1	Used in chillers and commercial AC Past studies have indicated that R-1234ze <u>might</u> form high-GWP HFC-23 in open air, however more recent studies have contested those findings.
R-744 (CO ₂)	1	Extremely low GWP – used in Heat Pump water heaters and refrigerated cases.



<section-header><section-header><section-header><list-item><section-header>


Elevators

- ISO Standard 25745-2 assigns letter grades
 Running Energy
- Idle/Standby Power
- In Codes and Standards
 ASHRAE 90.1-2016 Put ISO rating on
- Design documents ASHRAE 90.1-2022 – minimum of an ISO E
- rating
- Savings

46

- Middle Level—save 65% compared to bottom
- Top Level—save 92% compared to bottom



